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ABSTRACT 

Measurement of linkage disequilibrium involves two sampling processes. 
First, there is the sampling of gametes in the population to form successive 
generations, and this generates disequilibrium dependent on the effective 
population size ( N , )  and the mating structure. Second, there is sampling of 
a finite number ( n )  of individuals to estimate the population disequilibrium. 
---Two-locus descent measures are used to describe the mating system and 
are transformed to disequilibrium moments at the final sampling. Approxi- 
mate eigenvectors for the transition matrix of descent measures are used to 
obtain formulae for the variance of the observed disequilibria as a function 
of Ne,  mating structure, n, and linkage or  recombination parameter.-The 
variance of disequilibrium is the same for monoecious populations with or 
without random selfing and for dioecious populations with random pairing for 
each progeny. With monogamy, the variance is slightly higher, the propor- 
tional difference being greater for unlinked loci. 

HERE is now an extensive theory on the generation of linkage disequilibrium 
drift in finite populations. Several early studies used haploid models on 

the assumption that these would be adequate for diploid organisms (e.g., HILL 
and ROBERTSON 1968). Comparisons of these haploid models with those for 
monoecious populations with random selfing suggest that there is indeed little 
difference in the results except for loosely linked loci which, although little dis- 
equilibrium OCCLWS between them, account for most pairs of loci in most species. 
The effects of different mating systems on moments of disequilibrium have 
not been adequately discussed, however, nor has the mating system been related 
to moments of the within- and between-gametes disequilibria of COCKERHAM 
and WEIR (1977). 

A convenient framework on which to build a theory of linkage disequilibrium 
is that of two-locus descent measures. For populations initially in linkage equi- 
librium, only those measures concerned with identity by descent are needed, 
and a number of transition matrices for these measures in various mating sys- 
tems have been given by WEIR acd COCKERHAM (1969) and WEIR, AVERY and 
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HILL (1980). Variability in linkage disequilibrium can be obtained from these 
matrices by suitable transformations. 

The observed variation in disequilibrium follows from the sampling processes 
implied in the measurement of the coefficients. First, there is the sampling of 
gametes to form successive generations. This between-line variation is controlled 
by the mating system and is dependent on effective size, N e .  Second, there is 
the sampling of individuals to be scored, from which estimates are constructed. 
This is a within-line variation and is dependent on sample size, n. 

ANALYSIS 

Descent measures: Following WEIR, AVERY and HILL (1980), the 10 two- 
locus descent measures needed in this analysis are listed in Table 1. They involve 
genes located in two, three or four gametes and are referred to as digametic, 
trigametic or quadrigametic recipient measures, respectively. Each measure is 
a joint probability that genes a and a’ at one locus are not identical by descent, 
and b and b’ at a second locus are also not identical by descent. Subscripts serve 
to distinguish measures according to the individuals receiving the two, three or 
four gametes on which genes a, a’, b and b’ are located. For example, O1 = OII 
is the probability of double nonidentity for the two pairs of genes carried on the 
two gametes received by individual I .  Further explanation of these 10 measures 
is provided by WEIR, AVERY and HILL (1980). We also define P to be the pan- 
mictic index or one minus the inbreeding coefficient (probability a and a’ not 
identical by descent in one individual) and one minus the co-ancestry coefficient 
(probability a and a’not identical by descent in two individuals). 

Transition matrices for the descent measures are given for four mating sys- 
tems by WEIR, AVERY and HILL (1980) following the general algorithm estab- 
lished by WEIR and COCKERHAM (1969). The mating systems are as follows: 

MS: Monoecious with random selfing, N individuals. 
ME: Monoecious with selfing excluded, N individuals. 
DR: Dioecious with random pairing, each progeny from a new pairing, M 

males and F females. Effective population size Ne = 4MF/(M+F) .  
DH: Dioecious with lifetime pairing to give a hierarchical structure, M males 

and F = Mf females, each male mated to f females. Effective population 
size N e  = 4MF/(M+F).  

If - ut is the vector of descent measures (e1, , . . , A,) at generation t and fl 1 
the transition matrix for that mating system, then ut+l  = fl U t .  The matrix fl 
contains information about the mating system and has elements that are func- 
tions of (effective) population size and linkage parameter, A, which is one minus 
twice the recombination fraction, c, between the two loci studied. 

Frequr ncies of gene combinations: Just as there is a descent measure for each 
arrangement of four genes in two, three or four gametes, so there is a frequency 
for each arrangement when these genes have specified alleles. The frequency 
with which a random individual Z receives two gametes both carrying alleles A 
and B, i.e., the frequency of A A  BB double homozygotes, is written as Pi:, for 

- 1- 
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TABLE 1 

Definitions of descent measures and frequencies of gene combinations 

Moments 
PAPBX PA(l-P,)  

Gene arrangements- Descent measuresf Frequencies: PAPS (2--P*--P,) P F J l - P d  
Coefilcients of moments 

YB 
P L  

. B  

Quadrigenic 
Digametic 

(abja‘b’) 0 ,  = e,, 
(ab) (a‘b’) 0, = e,,, P$ 

1 

1 

1 

2 

1 

-P 
-P 
-11 
-11 
-11 

-P 
-II 

-II 
-P 

-11 
-P+m 

-II 

* Bars separate genes on separate gametes, parentheses separate genes in separate individuals. + Prob (a not id-ntical by descent to a‘ and b not identical by descent to b’). 
$. When genes a , ~ ‘  are of allelic type A and genes b,b‘ are of allelic type B .  Dots denote sum- 

mstion, vertical and horizontal bars separate individuals, while diagonal bars separate gametes 
within individuals, as shown by the left-hand column. 

example. The relation between descent measures and frequencies is simple 
(COCKERHAM and WEIR 1973). Providing there is no initial linkage disequi- 
librium this double homozygote frequency is 

p:: = P A P B  - p A p B ( 2 - P A - P B ) P  + P A  ( I - P A ) P B ( l - P B )  0 1  7 
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where pA,  pB  are the frequencies of alleles A and B. Remember that P and 
are probabilities of nonidentity. All frequencies required in this note are shown 
in Table 1, along with their relation to the descent measures. We emphasize 
that the frequencies are population values, or excepted values over replicate 
lines. 

Linkage disequilibrium: Following COCKERHAM and WEIR (1977), we employ 
the following coefficients of linkage disequilibrium: 

A B - P A B - p A .  
within individuals D w  - . .  . B  

“usual” coefficient . .  

between individuals D Y  = PA .b, * - P A P B  

D A B  = P A B  - PAPB = 0: + DAB b 

composite coefficient AAB = PAB . .  4- PA,;( - 2pApB = D F  + 2 D 7  

and from now on drop the allelic designations. The first two coefficients are of 
use, or appropriate, only when coupling and repulsion double heterozygotes can 
be distinguished and digenic frequencies P A B  (A,  B in one gamete) and P A ;  

(A,  B in different gametes within one individual) can be recovered from geno- 
typic data. If random union of gametes is invoked, of course, gametic data can 
be inferred from genotypic data, and in this case Da = 0 and A = D = D,. 
The usual coefficient, which is a gametic measure, is seen to consist of two parts, 
one that serves primarily to measure departures from random union of gametes, 
while the composite coefficient is the only one about which inferences can be 
made directly from genotypic data in which coupling and repulsion double hetero- 
zygotes cannot be distinguished. It requires no assumption about the mating 
system. 

SampZing variation of disequilibria Observed sample values and maximum 
likelihood estimates of linkage disequilibria are denoted by tildes, and sampling 
variances of these estimates can be expressed in terms of frequencies of gene 
combinations. 

Establishing such expressions is straightforward, although tedious, and will 
be sketched here for 0,. If indicator variables xij,yij are defined for the jth 
gamete ( j  = 1,2) in the ith ( i  I= 1,2, . . . , n)  individual of a sample of n indi- 
viduals as 

xij = 1, if gamete carries A, yij = 1, if gamete carries B 
= 0 otherwise = 0 otherwise 

then 

- 1  
Dw == - $ (xii-xiz) (yii-yiz) . 

2n 
Recall that >AB and 
their sum is observable. 

are not directly observable from genotypic data, although 
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Taking expectations over all possible samples of size n, and over all replicate 
populations 

- 
& D, = P A B  - P A .  .. . B  ’ 

which, since we are assuming initial linkage equilibrium, is seen from Table 1 
to be zero. At this stage we could, if desired, separate the two sampling processes. 
Suppose that bAB, .. f iA;  . were the digenic frequencies in the infinite gametic pool 
produced by a set of parents in a particular population. Then, taking expectations 
just over all samples of size n progeny from these parents would provide 

- * & D, = P A B  - P A .  .. . B  ‘ 

The further expectation over all replicate populations gives population fre- 
quencies PAB, .. PA; . 

( $ A B - $ A ; )  = P A B - P A .  

which are functions of allelic frequencies pA,pB in the initial population from 
which all replicate populations are derived. These two processes will now be 
combined because, when predicting future behavior, particular frequencies such 
as PtB cannot be used. 

Now since indicator variables are unchanged by squaring, it follows, for 
example, that 

. .  . .  . B  ’ 

1 
4n2 

( 0 , ) Z  = - (xil+xi2-2zilziz) (yiltyiZ-2yilyiz) 

1 + - 3 2, (zil-xiz) (Yal-yiz) (xi.l-zv2) (yi.I-yi.2) 4n2 X f i  

and 
1 - - 

Var (0,) = & (0,) = 2n [ PdB .. + PA ; - 2 (Py + PA,”) + 2Pg] 

n-1 

The effect of the mating system on variation in linkage disequilibrium is incor- 
porated by replacing frequencies of gene combinations in results such as (1)  
by approprate functions of descent measures from Table 1. The results are given 
in Table 2. Expectations for two other quantities of interest are also given in 
Table 2, namely 

- 
Q = ~ A ( I - ~ A ) ~ B ( I - ~ B )  5 := [ p A ( 1 - 2 p A )  +F;] CpB(1-235B) +pz] 

where P i  and Pz are single homozygote frequencies. The population quantity 
R is just Q modified for departures from Hardy-Weinberg equilibrium and the 
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two quantities are equal when such equilibrium obtains. They are used (WEIR 
1979) to define correlations of gene frequencies - -  c -  

rz = Dz/Q , P 2  = A2/R . 
Approximate expressions: The preceding treatment is well suited to computer 

iteration, but does not offer immediate insight into the behavior of the various 
quantities. Accordingly, we have developed some approximations that generally 
perform quite well and help to relate this work to previous work (AVERY and 
HILL 1979). 

For each mating system studied here, the transition matrix can be expressed as 
a = T + S / N + O ( N - 2 )  , 

where N is replaced by N ,  for the dioecious cases, and it turns out that ,T - -  1 = I, 
where - I is the vector of unit elements. If the largest eigenvalue Y of - a and the 
corresponding vector 2 are written as 

- U -  

It = 1 +r/N+O(N-Z) , a =  1 +x/N+O(N-Z)  , - - -  
then the relation between eigenvectors and eigenvalues, 2 ,o = Y 2, gives 

1 + (SI + T x ) / N  + O ( W )  = - - -  1 + (x+rl)/N + O ( W )  
a -- -- 

or 
(2)  

The matrix I - T is not of full rank, so that (2) does not give a unique solution 
for - x, although differences among the elements can be obtained and are displayed 
in Table 3. A unique value, -1, is obtained for r to give a largest eigenvalue of 
I-l/N. Notice that systems M E  and DR give the same results where the effective 
population size N ,  is set at N for the monoecious case and at 4 M F / ( M  4- P )  for 
the dioecious case. 

The approximations 1 -l/N for v and - -  1 + x / N  for - o are useful, provided that 
N is sufficiently large that second ordw terms can be ignored and provided that 
the linkage parameter between the two loci is not near one, or recombination c 
is not near zero. When h = 1 or  c= 0, the largest root of 0 is 1-1/2N, corre- 
spending to the rate of fixation at a single locus since genes at both loci are now 
transmitted as a single unit and fixed at the same rate. The eigenvalue i-l/N 
corresponds, for large N ,  to (1-l/2N)2 I-l/N, which is a good approxima- 
tion to the rate of loss of heterozygosity at pairs of independent loci. 

The use of these approximations is seen most easily when the sample size n 
becomes very large, so that the variances of disequilibria are obtained for the 
infinite progeny array from a set of parents. In this case, Table 2 provides 

(S-Zr)l - - -  = (I-T) N - -  x . 

- 

- - 
Var (Ow) = (ez - 2r, -4- A,) Q Var (Db) = (A, - 2A, -t A,)Q - -  

COV (D,,Da) = (I?,- I?, - A, + A,) Q 
Var(i)  = (oZf2r, - -44?r3+A1-4A3+4A,)Q,  Var(5) = ( 0 2 - 2 ~ 3 + A 5 ) Q  

= (&IQ , &(E) = (A2 - 4A4 -I- 4 A d Q  , 



0 1 0 + d- 

0 

h 

I z 
I 

4 

e 

0 

m e 
I 

4 " 

h m 
E: 
+ 

I 

I 
v 

03 
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TABLE 3 

Elements of approximate eigenvectors corresponding to dominant eigenvalues of the descent 
measure transition matrices for various mating systems [deviation of xi/Ne from xlo/N,] 

Descent Mating system 
Element (i) measure MS' M E  and DR DH 

(Y __ 
Ne 

7 A2 0 
1 

Ne 

1 _- 
Ne 

8 A3 0 0 0 

1 - 0 
'Ne 

9 A4 

10 A5 0 0 

1 -- 
'Ne 

0 

where Q = pA ( l -pA)  pB ( 1-ps) in the base population. Notice that each of the 
second moments of disequilibria are contrasts in descent measures and tend to 
zero over time. Ratios of quantities governed by the same transition matrix can 
have nonzero final values, however, and expressions for the eventual correlations 
of gene frequencies can be obtained. Approximating the expected value of a 
ratio by the ratio of expected values, as is usual in this work (OHTA and KIMURA 
1969), for ME, for example 

(3) 
cz+ (1-c)Z 
2N,c(2-c) , 

- - 1 +A2 - -  
Er" = EDz'EQ = d2 = Ne(l--X) (3+X) 

- -  
from Tables 2 and 3. The same value holds for =: EA,/€R = S2. We prefer 
to use d2 rather than the ui of OHTA and KIMURA (1969) because we are not 
dealing with variances (nor, strictly, correlations). The result for d2 has been 
given previously by AVERY (1978) and AVERY and HILL (1979). For the 
remainder of this section, we present results just in terms of c = 1 - 2h. 
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Providing sample sizes n are reasonably large, so that terms of order n-2 can 
be ignored in Table 2, we can modify these approximate rexlts to include the 
effects of sampling for estimation. For example 

+ 8r3 + 2A3 +A4 - 6A5)]  Q . 
If terms involving l/nNe are also ignored, the net effect of this is to add 1/2n 
to d2 and l/n to S2. Tables 2 and 3 then provide, for ME, MS and DR, 

C2+ (1,-c)2 1 +- C2+ (1-c)Z 1 
2Nec(2-c) 2n 2Nec(2-c) n ' d2 z +-, 8 2 =  

while for DH 

[ (I'--C)Z + 2cq + f [  (1-c)Z + C2-J 1 
d2 z +- 2N,c(2-c) (f+l) 2n ' 

( 1 + 2 € Z )  +f[(I'-c>"cC"] 1 
8 2  = + - .  2Nec ( 2-C) ( f +  1 ) n 

(4) 

( 5 )  

For f +  00, the values for DH in (5) reduce to those in (4). With monogamy, 
f = 1, ( 5 )  becomes 

1 -c+2c2 1 
2Nec(2-c) n 6 2  ," +- .  d2 ," 

Numerical values: Examples showing the magnitude of the variation in link- 
age disequilibrium, as indicated by d2 and S2, are given for the hierarchical 
mating system in Table 4. Exact results are compared to the approximations 
(5) for a range of population and sample sizes, over which the approximations 
are seen to be very satisfactory. 

DISCUSSION 

The establishment of simple and useful approximations to the quantity d2 
has received much attention in the past, but this is the first exact treatment. 
WEIR and COCKERHAM (1974) did not distinguish between sample and popula- 
tion size, and may have obscured the simple nature of the theory by deriving 
transition equations for moments of the disequilibria rather than using tran- 
sition arguments just for descent measures and translating these to observable 
quantities such as linkage disequilibrium only in the sampling generation. The 
earlier treatment was more general in that initial linkage equilibrium was not 
required, it then being necessary to use the complete set of descent measures 
including descent relations for nonallelic genes. The formulae derived here using 
the eigenvector of the transition matrix of measures hold when the number of 
generations becomes large, and, in that case, the initial conditions do not matter. 
The rate of approach to these stable values depends on the linkage parameter: 
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TABLE 4 

Comparison of exact and approximaie values of d2, 62 for DH mating system 

Sizes d2 

N , M F f n  

64 32 32 1 64 Exact 
(Approx.) 

(Approx.) 

(Approx.) 

256 Exact 

CO Exact 

0.0141 0.0329 0.1182 
(0.01 43) (0.0341 ) (0.1272) 

0.0082 0.0272 0.1126 
(0.0085) (0.0283) (0.1213) 

0.0063 0.0252 0.1108 
(0.0065) (0.0263) (0.1194) 

256 128 128 1 64 Exact 0.0095 0.0143 0.0367 
(Approx.) (0.0094) (0.0144) (0.0377) 

(Approx.) (0.0036) (0.0085) (0.0318) 

CO Exact 0.0016 0.0065 0.0290 
(Approx.) (0.0016) (0.0066) (0.0298) 

256 Exact 0.0036 0.084 0.0309 

256 80 320 4 64 Exact 0.0093 0.0143 0.0367 
(Approx.) (0.0092) (0.0143) (0.0376) 

256 Exact 0.0034 0.0084 0.0309 
(Approx.) (0.0034) (0.0085) (0.0318) 

CO Exact 0.0014 0.0065 0.0290 
(Approx.) (0.0014) (0.0065) (0.0298) 

256 64 03 CO 64 Exact 0.0091 0.0142 0.0366 
(Approx.) (0.0091) (0.0143) (0.0376) 

256 Exact 0.0032 0.0084 0.0308 
(Approx.) (0.0033) (0.0085) (0.0318) 

Exact 0.0013 0.0064 0.0289 
(Approx.) (0.0013) (0.0065) (0.0298) 

1024 512 512 1 64 Exact 0.0083 0.0095 0.0152 
(Approx.) (0.0082) (0.0095) (0.0153) 

(Approx.) (0.0024) (0.0036) (0.0094) 

00 Exact 0.0004 0.0016 0.0074 
(Approx.) (0.0004) (0.0016) (0.0075) 

256 Exact 0.0024 0.0036 0.0093 

0.0259 0.044Q 0.1309 
(0.0260) (0.0458) (0.1389) 

0.0140 0.0331 0.1189 
(0.0143) (0.0341) (0.1272) 

0.0101 0.0292 0.1150 
(0.0104) (0.0302) (0.1233) 

0.0184 0.0233 0.0459 
(0.0182) (0.0232) (0.0464) 

0.0065 0.0114 0.0339 
(0.0065) (0.0115) (0.0347) 

0.0026 0.0075 0.0300 
(0.0026) (0.0075) (0.0306) 

0.0177 0.0227 0.0463 
(0.0174) (0.0226) (0.0458) 

0.0057 0.0108 0.0333 
(0.0057) (0.0108) (0.0341) 

0.0018 0.0068 0.0294 
(0.0018) (0.0069) (0.0302) 

0.0171 0.0223 0.0448 
(0.0169) (0.0221) (0.0464) 

0.0052 0.0103 0.0328 
(0.0052) (0.0104) (0.0337) 

0.0013 0.0064 0.0289 
(0.0013) (0.0065) (0.0298) 

0.0165 0.0177 0.0235 
(0.0163) (0.0175) (0.0233) 

0.0046 0.0058 0.0116 
(0.0046) (0.0058) (0.0116) 

0.0007 0.0019 0.0076 
(0.0007) (0.0019) (0.0077) 

the largest eigenvalue of 0 is approximately 1-1,” and the next largest does not 
exceed, but may be very close to, (1+h)/2 = 1-c. For the DH mating system, 
the exact values shown in Table 4 were all reached to four significant figures 
within five generations of = 0 (c = 1/2), within 30 generations for h = 3/4 

- 
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( c  = 1/8) and between 70 and 180 generations for = 15/16 ( c  = 1/32). The 
time to equilibrium increases at an accelerating rate as linkage increases. 

Our results show that the mating structure does have an effect on measures 
of disequilibrium such as d2, and we find the differences to be somewhat sur- 
prising. The same formulae (4) hold for monoecious populations with or with- 
out random selfing (MS,ME) ,  for dioecious populations in which pairing is 
random for each progeny separately ( D R ) ,  and where there are fixed matings 
but very many mates for each male (DH, f + w ) ; but if there is a hierarchical 
structure with fixed matings and few mates per male, particularly with mo- 
nogamy (DH, f = l ) ,  different formulae (5,6) apply. The differences are pro- 
portionately greatest for unlinked loci ( A  =: 0, c = 0.5): for MS, M E  and DR, 
from (4)) 

d2 s 1/3Ne + 1/2n , S 2  1/3Ne l / n  , (7)  

d2  5/12N, 4- 1/2n , S2 zz 2/3N, + l/n . (8)  

while for DH with monogamy, from (6) ,  

The difference between results (7) and (8) decreases as Ne increases and would 
be slight for natural populations. In a previous paper (WEIR, AVERY and HILL 
1980), we considered the effects of the mating system on variances of inbreeding 
coefficients. The most nearly analogous expression is then the squared coefficient 
of variation of nonidentity, which for unlinked loci takes values of 1/3Ne for 
MS, l/l2Ne for ME and DR and for DH with f +  CO, and 1/6 N,.for DH with 
f = 1. These differences could be explained in terms of the frequencies of self, 
full-sib and half-sib matings: with DR, for example, matings among full-sibs 
occur with frequency of order 1’Ne2 while with monogamy their frequency 
is of order l /Ne, but these arguments do not seem obviously relevant to the 
variance of linkage disequilibrium. Our present view is that the crucial differ- 
ence between MS, M E  and DR, on the one hand, and DH with monogamy on 
the other, is that any generation in the latter involves only one of the possible 
combinations of matings; in an analysis of variance we could conceptually 
include a component for “variance between matings.” It  is reasonable to assume 
that such a component would be nonzero here, for effective recombination 
occurs only in individuals heterozygous at both loci and different mating sets 
will lead to different frequencies of doubly heterozygous progeny. The impli- 
cations of this variance between matings need to be examined in other contexts. 

In the analysis, we have dealt with quantities such as the ratio of expected 
moments, e.g., d2 (3) rather than the expectation of the quantity that can be 
observed, e.g., the ratio r2. Although the analysis was carried out using diffusion- 
type arguments for large population sizes in which no formal account of the 
mating structure was taken, HILL (1977) found that r2 was mostly a good 
approximation for d2, and additional numerical results show that they agree 
more closely as linkage becomes loose. Thus, the differences between the mating 
structures derived here for d2 with unlinked loci should hold also for r2 and 
similar quantities. Other approaches (SVED and FELDMAN 1973) have dealt 
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directly with r2. It then seems necessary to construct arguments conditional on 
observed gene frequencies. 

Formulae obtained here illustrate the difficulties of using observations on 
linkage disequilibrium to make inferences about population size, selection and 
structure. In particular, LAURIE-AHLBERG and WEIR (1979) wished to use the 
variance of A, specifically E ( T * ~ )  [equation (3)], to estimate effective population 
size for populations of Drosophila melanogaster that carried inversions, so that the 
analysis had to be restricted to unlinked loci. As illustrated by (7) and ( 8 ) ,  the 
expectation of such quantities depends on the degree of polygamy, but more 
importantly, the previous population size ( N e )  effects can be swamped by the 
final sampling ( n )  effects unless n is very much larger than N e ,  unlikely for 
typical sample sizes of 100 or so. 
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